Diverse gap junctions modulate distinct mechanisms for fiber cell formation during lens development and cataractogenesis.

نویسندگان

  • Chun-Hong Xia
  • Haiquan Liu
  • Debra Cheung
  • Catherine Cheng
  • Eddie Wang
  • Xin Du
  • Bruce Beutler
  • Woo-Kuen Lo
  • Xiaohua Gong
چکیده

Different mutations of alpha3 connexin (Cx46 or Gja8) and alpha8 connexin (Cx50 or Gja8), subunits of lens gap junction channels, cause a variety of cataracts via unknown mechanisms. We identified a dominant cataractous mouse line (L1), caused by a missense alpha8 connexin mutation that resulted in the expression of alpha8-S50P mutant proteins. Histology studies showed that primary lens fiber cells failed to fully elongate in heterozygous alpha8(S50P/+) embryonic lenses, but not in homozygous alpha8(S50P/S50P), alpha8-/- and alpha3-/- alpha8-/- mutant embryonic lenses. We hypothesized that alpha8-S50P mutant subunits interacted with wild-type alpha3 or alpha8, or with both subunits to affect fiber cell formation. We found that the combination of mutant alpha8-S50P and wild-type alpha8 subunits specifically inhibited the elongation of primary fiber cells, while the combination of alpha8-S50P and wild-type alpha3 subunits disrupted the formation of secondary fiber cells. Thus, this work provides the first in vivo evidence that distinct mechanisms, modulated by diverse gap junctions, control the formation of primary and secondary fiber cells during lens development. This explains why and how different connexin mutations lead to a variety of cataracts. The principle of this explanation can also be applied to mutations of other connexin isoforms that cause different diseases in other organs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gap junctions contain different amounts of cholesterol which undergo unique sequestering processes during fiber cell differentiation in the embryonic chicken lens

PURPOSE To determine the possible changes in the distribution of cholesterol in gap junction plaques during fiber cell differentiation and maturation in the embryonic chicken lens. The possible mechanism by which cholesterol is removed from gap junction plaques is also investigated. METHODS Filipin cytochemistry in conjunction with freeze-fracture TEM was used to visualize cholesterol, as rep...

متن کامل

Evidence for two physiologically distinct gap junctions expressed by the chick lens epithelial cell

Lens epithelial cells communicate with two different cell types. They communicate with other epithelial cells via gap junctions on their lateral membranes, and with fiber cells via junctions on their apices. We tested independently these two routes of cell-cell communication to determine if treatment with a 90% CO2-equilibrated medium caused a decrease in junctional permeability; the transfer o...

متن کامل

Expression of autofluorescent proteins reveals a novel protein permeable pathway between cells in the lens core.

The lens of the eye is composed of concentric layers of tightly packed fiber cells. The oldest fibers, those in the lens core, lose their nuclei and other organelles during terminal differentiation. This is thought to ensure the clarity of the lens. The anucleated core fibers are sustained by gap junction-mediated communication with metabolically active cells near the lens surface. In this stud...

متن کامل

Main intrinsic polypeptide proteolysis and fiber cell membrane domains.

The main intrinsic polypeptide (MIP) of ocular lens fiber cells, a putative gap junctional polypeptide, has been shown to undergo a physiologic proteolytic reduction in relative molecular weight with age. Electron microscopic studies of isolated lens fiber cell membranes have revealed the existence of two distinct classes of gap junction-like membrane-membrane interactions, which differ from ea...

متن کامل

Gap junctions are selectively associated with interlocking ball-and-sockets but not protrusions in the lens

PURPOSE Ball-and-sockets and protrusions are specialized interlocking membrane domains between lens fibers of all species studied. Ball-and-sockets and protrusions are similar in their shape, size, and surface morphology, and are traditionally believed to play a key role in maintaining fiber-to-fiber stability. Here, we evaluate the hypothesis that ball-and-sockets and protrusions possess impor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 133 10  شماره 

صفحات  -

تاریخ انتشار 2006